Program Status

Launched at the Paris Air Show in 1995, the S-92 has been developed to provide both civil and military operators with the first true replacement for the S-61. From its inception, the S-92 was designed to provide unprecedented levels of safety, maintainability, reliability, and operational economics.

Since its first flight in December 1998, the S/H-92 has accumulated over 1000 test hours in its development and certification program. The production configuration has been established with General Electric CT7-8 engines and a Collins cockpit, and agreements have been signed with several commercial customers. Basic FAA Type Certification is scheduled for the fourth quarter of 2002. Expanded certification for specific customer requirements will be completed in 2003, with production deliveries beginning in the third quarter.
S-92 Production Team

The S-92 Helicopter is being developed and produced by a worldwide, collaborative team led by Sikorsky Aircraft. Sikorsky provides the system integration function, and is developing all dynamic components. The S-92 program philosophy is to provide a common baseline aircraft to which customers add options. The aircraft is then built to order, configured for the customer’s specific mission.

Missions include Offshore Oil transport, VIP transport, Airline Service, Air Cargo, Utility, Troop Transport, Naval Operations, and Search and Rescue Operations.

S-92 TEAM PRINCIPAL PARTICIPANTS

- **Aerospace Industrial Development Corporation** (Taiwan)
 - Cockpit, including electrical harnesses, hydraulic lines and selected flight control components
- **Embraer** (Brazil)
 - Sponsons, fuel cells, and landing gear
- **Gamesa** (Spain)
 - Aft transition tailcone and main rotor pylon. Also responsible for fabrication of the aircraft interiors
- **Jingdezhen Helicopter Group/CATIC** (People’s Republic of China)
 - Vertical tail assembly to include fabrication of the horizontal stabilizer
- **Mitsubishi Heavy Industries** (Japan)
 - Main cabin section, the largest subassembly on the project
- **GE Aircraft Engines** (USA)
 - CT7-8 turboshaft engines
- **Rockwell Collins** (USA)
 - Cockpit liquid crystal multi-function displays and communication/navigation suite
- **FlightSafety International** (USA)
 - Integrated product team for training
General Specifications

PERFORMANCE

Standard Day, Sea Level at 26,150 lb/11,861 kg gross weight

<table>
<thead>
<tr>
<th>Speed/Cruise Speed</th>
<th>Maximum Speed (VNE)</th>
<th>165 kts</th>
<th>306 km/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Cruise Speed (VH)</td>
<td>151 kts</td>
<td>280 km/hr</td>
<td></td>
</tr>
<tr>
<td>Best Range Speed (99% best specific range)</td>
<td>137 kts</td>
<td>254 km/hr</td>
<td></td>
</tr>
<tr>
<td>Range: Civil Configuration (3,000 ft, ISA plus 10°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- with 19 passengers and 30-minutes reserve plus 10%</td>
<td>439 nm</td>
<td>813 km</td>
<td></td>
</tr>
<tr>
<td>- with 19 passengers and no reserve</td>
<td>538 nm</td>
<td>996 km</td>
<td></td>
</tr>
<tr>
<td>Maximum Range with Internal Auxiliary Fuel (370 gallons)</td>
<td>687 nm</td>
<td>1,272 km</td>
<td></td>
</tr>
<tr>
<td>Service Ceiling</td>
<td>15,000 ft</td>
<td>4,572 m</td>
<td></td>
</tr>
<tr>
<td>Hover Ceiling Out-of-Ground Effect</td>
<td>6,370 ft</td>
<td>1,942 m</td>
<td></td>
</tr>
<tr>
<td>Hover Ceiling In-Ground Effect</td>
<td>10,700 ft</td>
<td>3,261 m</td>
<td></td>
</tr>
</tbody>
</table>

WEIGHTS

Maximum Takeoff Gross Weight, Civil Configuration

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Weight (lb)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Load</td>
<td>26,150</td>
<td>11,861</td>
</tr>
<tr>
<td>External Load</td>
<td>28,300</td>
<td>12,837</td>
</tr>
<tr>
<td>Maximum External Load</td>
<td>10,000</td>
<td>4,536</td>
</tr>
<tr>
<td>Weight Empty, Offshore Oil</td>
<td>15,900</td>
<td>7,212</td>
</tr>
<tr>
<td>Weight Empty, Search and Rescue</td>
<td>16,000</td>
<td>7,257</td>
</tr>
<tr>
<td>Maximum Fuel Load, (Internal, Standard)</td>
<td>5,130</td>
<td>2,327</td>
</tr>
</tbody>
</table>

GENERAL DATA

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Seating Capacity</td>
<td>2</td>
</tr>
<tr>
<td>Passenger Seating Capacity, Offshore Oil</td>
<td>19</td>
</tr>
<tr>
<td>Passenger Seating Capacity, Military Transport</td>
<td>22</td>
</tr>
<tr>
<td>Baggage Compartment Volume</td>
<td>140 cu ft</td>
</tr>
<tr>
<td>Fuel Capacity (Internal, Standard)</td>
<td>760 US gal</td>
</tr>
</tbody>
</table>

POWERPLANT

Engine Quantity and Type

Two General Electric CT7-8
Aircraft Dimensions

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
<th>Main rotor diameter (blade tip circle)</th>
<th>56' 4"</th>
<th>17.17 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tail rotor diameter (blade tip circle)</td>
<td></td>
<td>11' 0"</td>
<td>3.35 m</td>
</tr>
<tr>
<td>Fuselage length</td>
<td></td>
<td>56' 2"</td>
<td>17.10 m</td>
</tr>
<tr>
<td>Fuselage width</td>
<td></td>
<td>12' 9"</td>
<td>3.89 m</td>
</tr>
<tr>
<td>Fuselage height (to top of tail pylon)</td>
<td></td>
<td>14' 2"</td>
<td>4.32 m</td>
</tr>
<tr>
<td>Length over-all (including rotors)</td>
<td></td>
<td>68' 6"</td>
<td>20.88 m</td>
</tr>
<tr>
<td>Height over-all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- to tip of tail rotor, positioned vertically</td>
<td></td>
<td>17' 11"</td>
<td>5.47 m</td>
</tr>
<tr>
<td>- to tip of tail rotor, positioned diagonally</td>
<td></td>
<td>16' 10"</td>
<td>5.12 m</td>
</tr>
<tr>
<td>Width (including horizontal stabilizer)</td>
<td></td>
<td>17' 3"</td>
<td>5.26 m</td>
</tr>
<tr>
<td>Width (blades parked at 45° to fuselage)</td>
<td></td>
<td>40' 0"</td>
<td>12.36 m</td>
</tr>
<tr>
<td>Main landing gear tread</td>
<td></td>
<td>10' 5"</td>
<td>3.18 m</td>
</tr>
<tr>
<td>Wheel base</td>
<td></td>
<td>20' 4"</td>
<td>6.20 m</td>
</tr>
<tr>
<td>Passenger cabin length (with bulkhead)</td>
<td></td>
<td>20' 0"</td>
<td>6.10 m</td>
</tr>
<tr>
<td>Passenger cabin width</td>
<td></td>
<td>6' 7"</td>
<td>2.01 m</td>
</tr>
<tr>
<td>Passenger cabin height</td>
<td></td>
<td>6' 0"</td>
<td>1.83 m</td>
</tr>
</tbody>
</table>

The S-92 features a spacious, stand-up cabin.
Cabin Arrangements

- 19 Crashworthy airline-style seats

- Multiple configurations include swivel chairs, divans, tables, and cabinets
- Restroom facilities are available
Cabin Arrangements

- Large cabin offers ample space for seats, litters, auxiliary fuel, and SAR emergency equipment
- 22 Crashworthy troop seats
The S-92 helicopter will be the first helicopter fully certified to the harmonized FAA, JAA Part 29 requirements.

This certification basis, combined with input from the offshore oil community, will result in the most comprehensive set of safety features ever integrated into a single helicopter design.
Equipment and Features
Standard Offshore Configuration

AIRFRAME
- Active vibration control system
- Nose electronics bay with hinged door
- Heated windshields
- Windshield wipers (2)/washer system
- Cockpit with openable clear view windows
- Jettisonable cockpit windows (2)
- Crashworthy pilot and co-pilot seats
- Airline interior with 19 crashworthy passenger seats
- 75 psf cabin floor
- Four cabin emergency exits
- Ten double pane windows
- Upward-hinged upper door
- Airstair lower door
- Bleed air heat system (two zone)
- Chin and side window defogging system
- Ventilation system (two zone)
- Exterior fuel sponsons (2)
- Hydraulic-powered rear ramp
- Retractable tri-cycle landing gear
- Emergency flotation system
- Sponson-stowed life rafts (left and right)
- High-quality exterior finish
Equipment and Features
Standard Offshore Configuration

POWERPLANT AND FUEL SYSTEM
- Two General Electric CT7-8 engines with integral particle separators
- APU for engine start, ground power, heating, and in-flight emergency power
- Dual channel FADEC with autostart, power assurance and OEI training mode
- Dual suction fuel feed system with breakaway fittings, and crossfeed capability
- Crashworthy fuel tanks (2) with a combined capacity of 700 gallons
- Single-point pressure fueling and defueling
- Dual point gravity refueling
- Low level fuel warning system
- Engine and APU fire detection and dual extinguishing systems
- Engine inlet anti-ice system

APU provides ground power and engine start. Flight rated for emergency/supplemental power.

Isolated sponsons, suction feed and self-sealing breakaway valves enhance fuel system crashworthiness.

The GE CT7-8 engine is derived from the proven CT7/T700 family, which has accumulated over 28 million hours of operation.
Equipment and Features
Standard Offshore Configuration

TRANSMISSION
- Main transmission with two input/accessory modules
- Intermediate and tail gearboxes with interconnecting shafts
- Chip detectors with fuzz burn-off
- Low maintenance drive shafts
- Rotor brake
- Diaphragm-type tail drive couplings
- Vibration monitoring

ROTORS AND CONTROLS
- Four-bladed, articulated main rotor system with fatigue-tolerant design and elastomeric bearings
- Composite construction main rotor blades
- Four-bladed flexbeam tail rotor
- Elastomeric main and tail rotor rod end bearings
- Low maintenance, rotor-mounted vibration suppression system
- Manual blade fold (two blades forward, two blades aft)
- Dual, redundant isolated pilot flight controls
- Dual, redundant, primary and tail rotor servos
- Tail rotor centering quadrant
- Dual, independent transmission-powered 4000 psi hydraulic systems
- Back-up, independent 4000 psi hydraulic system
- Redundant stability augmentation system with airspeed, attitude, and heading hold functions

Bearingless composite flexbeam tail rotor design is bird strike certified

The S-92 main transmission features a unique planetary gear system, and utilizes advanced materials for long life.

S-92 fatigue-tolerant hub and yoke design provides unlimited life and improved safety, and the main gearbox incorporates advanced corrosion-resistant materials and coatings.
Equipment and Features
Standard Offshore Configuration

AVIONICS
- Rockwell Collins glass cockpit with four multi-function displays
 - Primary flight instruments
 - Multi-purpose navigation display
 - Graphic engine instrument and caution/advisory (EICAS) display
 - Built-in-test (BIT) displays
- Proline IV communications/navigation suite
 - Dual VHF Communications
 - Dual VOR
 - DME
 - ADF
 - Transponder (Mode S)
 - Dual Radio Management Units
 - Dual Audio Control Units
- ARINC-429 and MIL-STD 1553 data-bus compatibility
- Dual AHRS
- Weather radar
- HUMS
- Passenger briefing system with page/chime feature

AUTOMATIC FLIGHT CONTROL SYSTEM
- Dual, digital Hamilton Sundstrand AFCS with fully-coupled flight director

ELECTRICAL SYSTEMS
- Two 75 KVA, 400 hz 3-phase, transmission-driven main generators
- Two 200 amp AC/DC convertors
- 35 KVA air-cooled APU-driven backup generator
- 100 amp AC/DC backup convertor
- 15 amp-hour battery
- Upper anti-collision strobe light
- Landing lights
- Cargo loading light
- Controllable searchlight
- AC/DC cabin power receptacles
- Integral cockpit lighting
- Wide-area cabin lighting
- Emergency lights
- HEELS
MISSION

- Takeoff at maximum gross weight (25,500 lb)
- Sea Level, ISA + 10°C
- Cruise at 3,000 feet, Long Range Cruise Speed*
- JAA Reserve: 30 minutes plus 10%
- Average fuel flow: 1,240 lb/hr

WEIGHTS

- Offshore Configuration weight: **15,658 lb**
- Crew: 400 lb
- Engine oil/washer fluid: 37 lb
- Tiedown kit/manuals: 10 lb

Operating weight: **16,105 lb**

* Speed for 99% best specific range
Mission Performance

External Lift

![Graph showing mission performance and external lift](image)

- **Sea Level Standard**
- **4000 ft, 95°F**

HOGE Ceiling

![Graph showing HOGE ceiling](image)

- **ISA**
- **ISA + 20°C**
- **Max TOGW (internal)**
- **Max TOGW (external)**
Mission Performance
Search and Rescue (SAR)

Sea Level 90°F
- 5 min warm-up
- 2 min sea level hover OGE
- 4 min climb @ VBE to 4000 ft
- Cruise @ 99% VBR
- Descend to sea level
- Sea level hover OGE
- 2.5 min per survivor
- 4 min climb @ VBE to 4000 ft
- Cruise @ 99% VBR
- Descend to sea level
- 2 min sea level hover OGE
- 10% Reserves

Payload - lb

Radius of Action - nm

0 1000 2000 3000 4000 5000 6000 7000
0 50 100 150 200 250 300 350

6 Survivors

Standard Internal Fuel

370 Gal Internal Aux Fuel

360
300
240
180
120
60
0
0 50 100 150 200 250 300 350

Search Time on Station - Minutes

Radius of Action - nm

1 Hour Loiter

Standard Internal Fuel

370 Gal Internal Aux Fuel

Sea Level 90°F
- 5 min warm-up
- 2 min sea level hover OGE
- 4 min climb @ VBE to 4000 ft
- Cruise @ 99% VBR
- Descend to sea level
- 15 min sea level hover OGE
- Pick-up 6 survivors
- 4 min climb @ VBE to 4000 ft
- Cruise @ 99% VBR
- Descend to sea level
- 2 min sea level hover OGE
- 10% Reserves
Optional Equipment

AIRFRAME AND ROTORS
- Overhead cockpit windows
- Full sliding door
- Sliding upper cabin door, right side
- Sliding cabin window, left-side, forward
- Jettisonable cabin windows
- 200 psf cabin floor
- Mixer work platform
- Tail pylon pullout steps
- Air conditioning system
- Cold weather heat system
- Main and tail rotor blade de-ice

FURNISHINGS
- Armored crashworthy pilot/copilot seats
- Utility type soft cabin interior
- Crashworthy, fold-up troop seats (up to 22)

PROPULSION/FUEL SYSTEMS
- Ballistic self-sealing fuel system
- Internal aux fuel system (185 gallons x 2)
- External aux fuel system (230 gallons x 2)
- External pneumatic ground start capability

Optional 50-inch sliding door facilitates ingress and egress of rescues and litters during SAR missions.

Spacious cabin accommodates up to 22 troops, 12 litters, or 3 standard LD3 cargo containers.
Optional Equipment

ELECTRICAL SYSTEMS/LIGHTING
- Lower anti-collision light
- Logo lights
- Recognition lights
- Rotor head inspection light
- Emergency floor lighting

AVIONICS
- Fifth color 6" x 8" LCD (center position on instrument panel)
- SAR AFCS upgrade with coupled search patterns
- Universal flight management system (UNS-1C) with GPS
- Doppler
- TCAS I
- Lightning sensor

SPECIAL MISSION EQUIPMENT
- Hydraulic rescue hoist (600 lb, 250 fpm)
- Cargo hook (10,000 lb capacity)
- 12 Litter medevac kit
- Floor roller system
- Ramp roller system
- Ramp cargo flippers
- Cargo loading winch
- Sea anchor

The roomy cabin of the S-92 affords ample space for casualty evacuation.

The rear ramp and optional floor roller systems allow fast and efficient loading and unloading of cargo.

Up to 10,000 pounds of external cargo may be carried using the stowable cargo hook.

SAR mission equipment options include 600 pound capacity rescue hoist.
Minimization of direct operating costs has, from the start, been established as a primary design criteria of the S-92 helicopter program. Projected DOCs have been continuously monitored during all phases of development. The underlying philosophy has been to reduce operator costs through the extension of component lives and minimization of the number of components subject to overhauls. As a result of holding to this philosophy, all components on the S-92, with the exception of the main gearbox, require only on-condition maintenance. The main gearbox itself has a TBO of 6,000 hours, higher than any gearbox previously introduced by Sikorsky into the commercial marketplace.

With the dramatic reduction in overhauls and life-limited components, the S-92 design will provide operators a savings in excess of $400 per flight hour in maintenance costs compared to any other helicopter in its class.

The S-92 has only one component requiring scheduled overhaul, and only two components with a retirement life of less than ten years or 12,000 hours.

Unlimited life main rotor blade incorporates composite spar technology and utilizes a swept, tapered anhedral tip. This design provides improved lift and maneuverability.

Anti-torque control is provided by unlimited life tail rotor blades with bearingless composite flexbeam. The pitch control links use elastomeric bearings.

Designed to flaw tolerant certification requirements, the unlimited life S-92 main rotor head features redundant load paths and elastomeric bearings. The result is 50,000 hours before overhaul.
Cost of Operation
Offshore Transport Service

The following information is supplied to aid in the preparation of estimates of the cost of operation for the S-92 helicopter in offshore oil transport service. Costs have been calculated in general accordance with the practices described in the Guide For Presentation of Helicopter Operating Cost Estimates, published by the Committee on Helicopter Operations Cost. The estimates presume a mature operation in which there has been opportunity for costs to stabilize and assume no benefit for warranties.

Direct operating costs are calculated for a new S-92 flying 1,000 hours per year using 1999 prices. Reliability and maintainability characteristics are based on Sikorsky’s H-60 experience. The H-60 fleet has accumulated in excess of 4 million flight hours since the model’s introduction in 1978. The S-92 design incorporates the lessons learned on the H-60 program and thereby provides a significant improvement in cost-effectiveness.

VARIABLE COSTS

<table>
<thead>
<tr>
<th></th>
<th>SIKORSKY ESTIMATE</th>
<th>OPERATOR ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUEL AND LUBRICANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average fuel consumption (gallons/hour)</td>
<td>178.0</td>
<td></td>
</tr>
<tr>
<td>Fuel cost per gallon ($)</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>Cost for fuel ($/hour)</td>
<td>269.00</td>
<td></td>
</tr>
<tr>
<td>Cost for lubricants (3% of fuel)</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>Total cost for fuel and lubricants ($/hour)</td>
<td>277.00</td>
<td></td>
</tr>
<tr>
<td>LABOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor rate ($/hour)</td>
<td>47.30</td>
<td></td>
</tr>
<tr>
<td>Direct maintenance (MH/FH)</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Indirect maintenance (MH/FH)</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Total maintenance (MH/FH)</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Total labor cost ($/hour)</td>
<td>192.00</td>
<td></td>
</tr>
</tbody>
</table>
Cost of Operation

Offshore Transport Service

<table>
<thead>
<tr>
<th>RESERVE FOR RETIREMENT ITEMS</th>
<th>LIFE LIMIT</th>
<th>SIKORSKY ESTIMATE</th>
<th>OPERATOR ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squibbs</td>
<td>5 years</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Tail rotor servo coupling bearing</td>
<td>2,000 hours</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Retirement items with lives greater than 12,000 hours</td>
<td>13.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total retirement item cost ($/hour)</td>
<td>14.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OVERHAUL ITEMS	TBO		
Main gearbox	6,000 hours	39.02	
Total overhaul item cost ($/hour)	**39.02**		

RESERVE FOR UNSCHEDULED REPAIRS			
Electrical		16.06	
Fuel system		2.71	
Hydraulic system		32.04	
Landing gear		15.54	
Lighting		2.82	
Airframe		28.93	
Rotors		98.96	
Power train		57.24	
Flight controls		45.85	
Avionics		88.40	
Propulsion		38.68	
Utility systems		1.96	
Total unscheduled repair cost ($/hour)	**429.19**		

Total engine overhaul and spares cost ($/hour) 220.00

Total variable cost ($/hour) 1,172.00
Cost of Operation
Offshore Transport Service

FIXED COSTS

<table>
<thead>
<tr>
<th>Reserve for Retirement Items</th>
<th>Sikorsky Estimate</th>
<th>Operator Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary ($/year)</td>
<td>54,275.00</td>
<td></td>
</tr>
<tr>
<td>Salary with benefits (x 1.3)</td>
<td>70,558.00</td>
<td></td>
</tr>
<tr>
<td>Pilot hours per year</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>Crew cost per hour</td>
<td></td>
<td>88.00</td>
</tr>
</tbody>
</table>

Total crew cost for two pilots ($/hour): 176.00

ANNUAL COSTS

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull insurance, assumed rate (%)</td>
<td>3.6</td>
</tr>
<tr>
<td>Hull insurance, annual cost ($/hour)</td>
<td>180.00</td>
</tr>
</tbody>
</table>

Total insurance cost ($/hour): 180.00

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depreciation</td>
<td>680.00</td>
</tr>
</tbody>
</table>

Total Fixed Costs ($/hour): 1,036.00

TOTAL OPERATING COST SUMMARY

<table>
<thead>
<tr>
<th>Cost Description</th>
<th>Cost ($/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total variable cost</td>
<td>1,172.00</td>
</tr>
<tr>
<td>Total fixed cost</td>
<td>1,036.00</td>
</tr>
</tbody>
</table>

Total operating cost ($/hour): 2,208.00

The operating data provided herein are estimates only. Sikorsky endeavors to ensure that this data is current and meaningful for operating cost evaluations. Sikorsky, however, does not warrant, and you should not rely upon, this data as defining the operating costs or overhaul/retirement times for any particular S-92 aircraft or its components.